Stimulus frequency dependence of blood oxygenation level-dependent functional magnetic resonance imaging signals in the somatosensory cortex of rats.
نویسندگان
چکیده
Understanding the mechanism of coupling between neuronal events and hemodynamic responses is important in non-invasive functional imaging of the brain. The stimulus frequency dependence of hemodynamic responses has been studied using a rat somatosensory cortex model; most results for short stimulus durations reveal peak frequencies at which the hemodynamic response is maximized. However, such peak frequencies have not been observed in studies using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals with long stimulus durations. To clarify whether the stimulus frequency dependence of BOLD signals depends on the stimulus duration, we measured BOLD signals at 7 T with short- and long-stimulus durations for stimulating rat forepaw at 1-10 Hz using spin-echo echo-planar imaging to enhance changes in activation focus. For both these durations, BOLD signals were significantly higher at stimulus frequencies of 3 or 5 Hz in agreement with the results of previous studies using optical techniques. Our results show that stimulus duration has little influence on the stimulus frequency dependence of BOLD signals in the rat somatosensory model. The discrepant results of most previous fMRI studies using gradient-echo sequence may be ascribed to the difference of imaging to enhance activation focus or draining vein.
منابع مشابه
Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملComprehensive correlation between neuronal activity and spin-echo blood oxygenation level-dependent signals in the rat somatosensory cortex evoked by short electrical stimulations at various frequencies and currents.
It is essential to elucidate the relationship between blood oxygenation level-dependent (BOLD) signals and neuronal activity for the interpretation of the functional magnetic resonance imaging (fMRI) signals; this relationship has been quantitatively investigated by animal studies measuring evoked potentials as indices of neuronal activity. Although most human fMRI studies employ the event-rela...
متن کاملMicrosoft Word - Huttunen_Joanna_Thesis_Proofs_corrected_2.docx
It has been known for more than a century that stimulus induced neuronal activation evokes changes in the vascular system. During neuronal activation, the blood flow increase exceeds blood demand, and the amount of deoxygenated hemoglobin becomes reduced. Since deoxyhemoglobin is paramagnetic, this leads to an increased signal detectable with blood oxygenation level dependent (BOLD) functional ...
متن کاملBOLD responses to trigeminal nerve stimulation.
The current study investigates a new model of barrel cortex activation using stimulation of the infraorbital branch of the trigeminal nerve. A robust and reproducible activation of the rat barrel cortex was obtained following trigeminal nerve stimulation. Blood oxygen level-dependent (BOLD) effects were obtained in the primary somatosensory barrel cortex (S1BF), the secondary somatosensory cort...
متن کاملDissociable brain activation responses to 5-Hz electrical pain stimulation: a high-field functional magnetic resonance imaging study.
BACKGROUND To elucidate neural correlates associated with processing of tonic aching pain, the authors used high-field (3-T) functional magnetic resonance imaging with a blocked parametric study design and characterized regional brain responses to electrical stimulation according to stimulus intensity-response functions. METHODS Pain was induced in six male volunteers using a 5-Hz electrical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience research
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2008